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In the last paper of this series on nonequtlibrtum thermodynamics of linear systems with memory, methods 

of the theory of linear passive dynamic systems are used to construct a complete family of thermodynamic 

nonequilibrium potenttalx for the thermodynamic systems considered. It ts shown by a spectfic example that 

the property of no,,uniqueness of the thermodynamic potential ts tnherent even tn very simple thermodynamic 

systems, and its possible physical tnterpretatton is discussed. 

Introduction. In the previous articles of this series [I,  21 we formulated a theory of generalized linear 

thermodynamic systems with memory and proved the necessary, and sufficient conditions for satisfaction of the 

second principle. In the proof we used the so-called entropy-free formulation of the second principle so that entropy 

(or, generally speaking, a thermodynamic potential) would be a concept constructed in the theory. The general 

theory gives only a definition of thermodynamic potentials as extreme constructions on a certain set of processes 

[ 1-4 ]; therefore, the problem of derivation of explicit expressions for them arises, and this work is concerned with 

this derivation for the above mentioned linear thermodynamic systems with memory. We managed to solve this 

problem because the theory of thermodynamic systems considered shows a far-reaching analogy with the theory 

of passive dynamic systems [5 I. 

Since our main results make considerable use of concepts, methods, and results of the theory of linear 

passive dynamic systems and this work is mainly intended for physicists and mechanical engineers, we will start 

with a brief review of some necessary information from this theory [5 ]. 

1. Some Information from the Theory of Linear Passive Dynamic Systems. Let C, R, R +, and R ++ be sets 

of complex, material, material non-negative, and material positive numbers, respectively. If L(WI, W2) is the space 

of linear operators from the vector space Wl to the vector space W2, the norm of the operator L E L(Wt, W2) is 
defined by 

II L I I =  s u p { I t x l  : x E W  I, Ixl = 1}, (1.1) 

and the element from L(W2, WI) conjugated to L and denoted by L • is found from the relation 

1 2 

y~ kx = x ~ LXy, (1.2) 

I 2 
where ~ and ~ represent scalar products in WI and We, respectively. 

A linear dynamic system of the input-output type is described by a relation of the type [5 ] 

t 

y(t)  = W0u(t) + f w ( t - r )  u ( r ) d r ,  (1.3) 
- - o o  

where u(-): R --, VI is the input, y(-): R --, V o is the output, Vt and V o are the finite-dimensional vector spaces of 

the input and output parameters,  respectively, and W ~ ( . )  + W(-): R + -~ L(Vt, VO) is the pulse response. 
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It is assumed that u( . )  and y ( )  are locally quadratically integrable with the carrier restricted from the left. 

Since Vt and V o are finite-dimensional,  the number of inputs and outputs is finite, and the condition that W( . )  is 

a Boolean function, i.e., it is a finite sum of products of polynomials, sines, cosines, and exponents,  corresponds 

to the condition that the system have a finite number  of internal degrees of freedom. System Z t / o  is completely 

described by its transfer function 

dcf 
G ( s )  = W 0 +  W L ( s ) ,  (1.4) 

where W L ( ) : C  --- L(VI ,  V 0 ) is the Laplace transform of W(.) .  

It is well known that system Y'z/o can be adequately expressed by an i n t e r n a l  descr ip t ion:  

5 'v :  J : =  Ax + Bu,  y = Cx + Du,  (1.5) 

where x E V is the internal state , V is the finite-dimensional vector space of internal states with the scalar product 

" ", A --, L ( V , V ) ,  B --, L ( V  t, V), C --, L (V ,  VO), D --, L ( V  t, VO) are the opera to r  pa rame te r s  of the internal  
description. 

It is said that Yv is a relatization of system ZI /O  in the space of internal states if Y-v generates the same 

mapT~ng of the inputs u( . )  to the outputs y(.) as Zt. O does, and this is equivalent to the conditions 

D = W 0 , c e A t B  = W ( t ) ,  t E R + , (1.6) 

where eAt is a one-parameter  semigroup (occasionally called a matrix exponent, whose definition can be found, in 
particular, in [6 ]). 

Relations (1.6) are equivalent to the condition 

D + C (Is - A) - t  B = G (s) .  (1.7) 

It is known that a set of realizations of X v exists for a given El /O.  Those realizations that have the additional 

property that the dimension of the space of the internal states n = dim (V) is the smallest of the possible realizations 

are called minimal. This property is satisfied if and only if the realization satisfies the conditions of attainability 
and observability: 

n - I  
~3 34 ( A k B ) =  V (attainabil i ty),  (1.8) 

k = 0  

n-I  
N Ker (CA k) = 0 (observability) , (1.9) 

k=O 

where ~ is the region of values, @ is the sign of the algebraic sum, and Ker is the kernel of the corresponding 

operator. Attainability means that any internal state can be realized by appropriate control, and observability means 

that in the space of internal states there are no "dead zones," i.e., regions in which a change in the internal state 
does not lead to a change in the output. 

An important result concerning isomorphism in the space of internal states is known 17 1: all possible 

minimal realizations can be obtained from one unique realization with parameters {A, B, C, D} in terms of the 
following transformation group: 

{A, B, C, D} --, {SAS -1, SB, CB -1, D t , (1.10) 

Here we use the term "internal state" to avoid further confusion, though in the theory of dynamic systems the 
term "state" is ordinarily used. 
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where S is an a rb i t r a ry  reversible opera tor  of L( V, V). Moreover, an opera tor  S that relates one minimal real izat ion 

to ano ther  is unique. 

Passive dynamic  sys tems are  an important  subclass of dynamic  systems.  

The  concept of passivity is def ined for dynamic  sys tems in which the input and  output spaces are  one and 

the same space V / = V 0 = W with the scalar  product ( . ,  -). Only such systems will be considered everywhere  below. 

System Z I / o  is called passive if 

! 

f (~ (~), y (r)) a'~ _ 0 ( t .  l t)  
-oo 

for any inputs u ( ' )  and any t _> 0. 

The proper ly  of passivity of a dynamic  system can be expressed in terms of the t ransfer  function: the 

system YI,.'o is passive if and only if 

G ( c r +  tto) + G • ( o r -  tw) >_0 (11.12) 

does not coincide with s ingular  G for any cr _> 0, w ~ R, or cr + /co. This property can also be expressed  in terms 

of real izat ions of dynamic  systems.  

If ~'v is some minimal  realization of dynamic  system Z I ' o  with parameters  {A, B, C, D}, system Xr  is 

passive if and only if there  exists a posit ive-definite opera tor  solution Q = Q• E L(W, W) of the inequal i ty  

[(AXQ + QA) x + (QB - C • u 1 �9 x + ( [ (B•  - C) x + Du ], u) <_ 0 , 1.13) 

which must be sat isf ied for any  x E V and any u • W. 

Moreover,  the family of such solutions Q is convex, compact,  and contains maximum Q+ and mimmum 

Q -  values (here and below, the concepts "greater ,"  "smaller ,"  "maximum,"  and "minimum" are  in te rpre ted  in the 

sense of the posi t ive-def ini teness  of the opera tors) ,  so that  for any  solution Q the relat ion 

holds.  

Q -  _< Q < Q + .  (1.14) 

Two Lyapunov functions def ined in the space of internal  s tates  V as 

f 1 s a(xO) = sup - f (u (r), y (r)) dr  : T >  0 ,  x ( -  T) = 0 ,  x ( 0 )  =.,r o , 
T , u ( ' )  0 

(1.15) 

Sr(XO)= inf - (u (r), y (r)) dr : T > 0 ,  x ( - T ) = 0 ,  x ( 0 ) = x  0 (1.16) 

• , . ( - )  l - . 

are  impor tant  in ana lys i s  of the propert ies  of passive dynamic  systems.  It can be demons t ra ted  that these functions 

are given by the express ions  

I 
s a ( x )  = ~ x . Q - x ,  (1.17) 

In this case, it is clear  that  

1 .Q+ 
S r (X)  = ~ X X ,  (1.18) 

sr (x) _< s a (x) 

for any  x. It can be easi ly  seen that  with al lowance for (1.5) inequal i ty  (1.13) is equivalent to 

( I .19)  
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1 d (x ( t ) Q x  ( t))  < (u ( t) ,  y ( t ) ) .  (1.20) 
2 d t  

Hence, with allowance for (1.17) and (1.18): 

t 2 

s a (x  ( t2))  - s a (x  (tl)) > f (y (r), u (r)) dr , (1.21) 
t I 

and 

where 

t 2 

S r (X ( / 2 ) )  - -  Sr (X ( l l ) )  > f (.Y ( r ) ,  t/ ( r ) )  d r  

t 1 

t 2 

s (x  ( O )  - s (x  ( q ) )  >_ f (:,, ( r ) ,  u ( r ) )  d r ,  
l I 

(1.22) 

(1.23) 

1 
s (x)  = -~ x .  Q x ,  (1.24) 

and Q is any of solutions (1.13). 

The Lyapunov functions s, sa, Sr will be important later in the construction of thermodynamic potentials. 

2. Construction of Thermodynamic  Potentials. Starting with this section, we return to the theory of linear 

thermodynamic systems with memory considered in this series of articles. In what follows, it is assumed everywhere 

that the relaxation function R (see [1 ]) is a Boolean function, i.e., it is a finite sum of products of exponents,  

polynomials, sines, and cosines. In spite of its apparent boundedness,  it is a rather extensive class of functions, 

since any relaxation function can be approximated by a function from this class. 

It should be noted that inequality (2.10a) [1 ], which by virtue of lemma 1 [ l l  and theorem 1 [2] is a 

necessary and sufficient condition for the relaxation function to satisfy the second principle, can be expressed in 

the form 

t 

f ((3(P~A) - cr 0 - Et h ( r ) ) ,  h (T)) dr >__ 0 .  (2.1) 
0 

This inequality must be satisfied for any equilibrium state A0 and any process h. For the thermodynamic  system 

considered we introduce a concomitant dynamic system Z1/O for which the input u is defined as 

u = k, (2.2) 

(2.3) 

and the output y is defined as 

t t 

y (t) = o - o 0 - Ec = f R (r)  t (l - r )  d r  = f R ( r )  u (t - r )  c / r ,  
-oo  -oo  

Thus, for this system the relaxation function R plays the role of the pulse response function W. Then,  in 

terms of this concomitant dynamic system, inequality (2.1) is equivalent to the following: 

t 
f (.y (r), u (r)) dr >__ 0 ,  (2.4) 

which is none other than the condition of passivity for this system (see (1.11)). 

526 



Since according to the assumption the function R is Boolean, the dynamic  system l~i/O in t roduced here 

admits  at least one f in i te -d imensional  minimal real izat ion Y in terms of internal  s ta te  variables.  This  implies that  

there  exists  a f in i te -d imens iona l  vector space of internal  states V, and the opera tors  A: V--, V, B: S --,, V, and  C: 

V--,, S are  such that for any  inputs u ( - ) ,  the following system gives the same outputs  that  (2.3) does: 

y =  C x ,  J~= A x +  Bu.  (2.5) 

Algor i thms  for cons t ruc t ion  of such real iza t ions  with preset  R have been developed in the theory  of 

real izat ion of dynamic  sys tems  and descr ibed,  in part icular ,  in [7 ]. 

As was a l r eady  s ta ted  in Sect. 1, any  real izat ion is associated with the initial pulse function R by the relat ion 

(see ( 1.6)): 

R (t) = ceAtB . (2.6) 

It should be noted that values of internal  s tate variables x = 0 correspond to equil ibrium (s ta t ionary)  s ta tes  

of dynamic  system Y (2.5). Since for a the rmodynamic  system, any configurat ion t rajectory is such that i ( t )  = 0 

for all t shor te r  than some to, i.e., all t rajectories  start  from equilibrium states,  then the same proper ty  is also 

character is t ic  of processes in the concomitant  dynamic  system Y, i.e., u(t) = 0, x = 0 for t < to. It is this condit ion 

that is the initial condit ion for different ial  equation (2.5), so that with this initial condit ion its solution has the form 

t 
x (t) = f e A(t-s)  Bu (s) d s .  (2.7) 

- o o  

A l inear  functional  x ( - )  is in t roduced that es tabl ishes the projection of the space of different ial  his tor ies  

:X (see [1 ]) into the space of internal  s ta te  variables V as follows: 

x 09 = ~ e As B f  (s) d s .  (2.8) 
o 

With this defini t ion and  notat ion (2.2), relat ion (2.7) can be rewri t ten as 

"" i t (2.9) x(t)= x( ). 

Since, as follows from (2.4), the dynamic  sys tem def ined here is passive, the Lyapunov functions s(x) 

def ined in Sect. 1 exist  for it (see (1.15) and (1.16): 

t 2 

s (x (t2)) - s (x ( t l ))  >- f (y (r), u (r)) d r .  (2.10) 
t 1 

Here s is def ined as 

1 s (x) = "~ x . Q x ,  (2.11) 

where Q: re' ~i. v such that Q > 0, Q• = Q is an opera tor  solution of the inequal i ty  

I (A•  + QA) x + (QB - C x) u ]-x + ((BXQ - C) x ,  u) <-- 0 ,  (2.12) 

which must  be sat isf ied for any  x E W, u E s. 

As was ment ioned  above, for passive dynamic  systems,  such a solution always exists ,  and  the set of 

solut ions is compact  and  conta ins  minimum and  maximum solutions Q+ and Q - ,  respectively.  

The  two funct ionals  x: 36 --,, R and ~: $ --,. R are  defined as 

s ( f )  = s (xU ' ) ) ,  (2.13) 

527 



t x  

., I (~, ~) _ 7 (to, Zoo) + .~ (./3 (2.14) V"o (~'/) = ao (a - t o) + 7 

If in (2.10) the terms of the concomitant dynamic system are replaced by the terms of the thermodynamic 

system and definitions (2.13) and (2.14) are taken into consideration, inequality (2.10) can be rewritten as 

t 2 

~ '0  (t (t2), t t2) - ~ '0  (t (ti), J I )  _< f (o (r), ~ (r)) d r .  (2.15) 
t I 

If the time interval t2 - tl is denoted by T, and the initial state at the time tl, by A, i.e., 

T = t 2 - t , ,  A = tE ( t , ) ,  k t' t ,  (2.16) 
t ) 

and the process defined by 

h (t) = k (t - t l ) ,  (2.17) 

is considered, inequality (2.15) will take the form 

T 
r v'~,0 (p~A) - u~0 fA) _< J (a (/'hA), h (~)) at ,  (2.18) 

0 

which is equivalent to C l a u s i u s - D u h e m  inequality (2.6) [1 ]. Consequently,  the state function ~t0, which is defined 
..-., + ^ _  

by (2.14), (2.13), and (2.11), is a thermodynamic potential and the functions yJE0 and WE0 , which are defined 

by the same formulas  but with Q+ a n d  Q -  subst i tuted for Q in (2.11), are the minimum and maximum 

t h e r m o d y n a m i c  potentials ,  respectively.  In this const ruct ion the fact is reflected that in its meaning  any  

thermodynamic potential is determined within its value in a certain fixed reference state, and here the equilibrium 

state {to, O +} is taken as this fixed reference state, which is denoted by the subscript. The construction given 

above describes the entire family of thermodynamic potentials for this system in an explicit form. 

3. An Example of a Thermodynamic  System with a Nontrivial Family of Thermodynamic  Potentials. It 

appears that, contrary to possible expectations, the presence of a nontrivial family of thermodynamic potentials 

(i.e., the presence of noncoinciding maximum and minimum potentials) is inherent even in comparatively simple 

thermodynamic systems. In what follows we will give an example of such a system and a comprehensive description 

of the family of thermodynamic potentials for it. 

We consider a one-dimensional thermodynamic system (i.e., a system with a one-dimensional  configuratioo 

space s = R, so that E and R degenerate to scalars) for which cr 0 = 0, E = 0, and the relaxation function R has the 

special form 

-R (s) = R 1 e 2Is + R 2 e )'2s, 

where 21 < 22 < 0, RI > 0, and Rz > 0. 

(3.1) 

An isothermal viscoelastic body with a relaxation function of the form of ~3.l) can be a physical counterpart  

of such a system. In this case, the "mechanical" terminology introduced in this theory should be understood 

literally, i.e., a is mechanical stress, t is deformation, and R is a stress-relaxation function. For the system 

concomitant with this system defined by (2.6) and (2.7), we consider its following minimal realization: 

For the matrix A given by (3.2), the matrix exponent has the form 

528 



At 
e 

The following parameters will be defined: 

e (3.3) 

-I -I 
1 ~ n + n  r n + m  

n=J .2~ .  1 , m =  , a -  2 ' f l -  2 
(3.4) 

From the construction we have 

a > l ,  f l > - l .  (3.5) 

Because of peculiarities of this particular system, dissipative inequality (2.12) has the form 

[(AQ + QA) x + 2 (QB - B) u ] . x  <_ O. (3.6) 

The following will be proved now. 

Proposi t ion 1. All positive-definite and symmetrical inequalities (3.6) have the form 

Q ( q ) =  [1 - mq q ] , ql < q < q2 , 
q 1 - -  r n - l q  L J 

(3.7) 

where 

- 2 / 3 -  ~/ 4fl  2 + 2 a -  2 - 2/5 + ~/4fl 2 + 2 a -  2 ( 3 . 8 )  
q l =  a - 1  ' q 2 =  a - 1  ' 

and 

Q -  = Q ( q 2 ) ,  Q+ = Q ( q l ) .  (3.9) 

Proof.  Since inequality (3.6) must be satisfied for any x and any u, it follows that 

QB - B = 0 ,  (3.10) 

since otherwise a u could always be found such that this inequality would be violated. 

We will express Q in the form of the arbitrary symmetrical matrix 

and substitute this expression into (3.10). As a result, cl and c2 can be determined, and then (3.11) is reduced to 

I Q = 1 - mq q (3.12) 
- I  ' q E R .  

q l - m  q 

Now, (3.12) is substituted into (3.6) with allowance for (3.10) to give 

2a, (1 - mq/ q + a2) 1 = < 0 (3.13) AQ + QA --I ] --  " 
[ q(,l~ + ~-2) 222(1 - rn q) 

The conditions of non-negativity of the matrix in (3.13) are expressed as 

2~. I (1 - mq)-< O, 2.~. 2(1 - m - l q )  <_ O, (3.14) 
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det (AQ + QA) >__ 0 .  (3.15) 

In view of (3.1), iI follows from (3.14) that 

1 - m q > _ O ,  

and (3.15) gives 

and 

- 1  
1 - m  q > - O ,  

4)122 (I - mq)  (I - m - l q )  -- q2 (21 + 22)2 

Moreover,  it must be that Q > 0, which leads to 

1 - m q > O  

(3.16) 

_> O. (3.17) 

(3.18) 

1 - 2qf l  > 0 .  (3.19) 

It is easi ly seen that (3.18) together  with (3.19) also ensures (3.16), and,  consequent ly ,  it is necessary to 

solve joint ly the sys tem of inequal i t ies  (3.17), (3.18), and (3.19). The  le f t -hand  side of inequal i ty  (3.17) is 

expressed as a quadrat ic  t r inomial  relative to q: 

(a - 1) q2 + 4flq - 2 _< 0 .  (3.20) 

In o rder  that this inequali ty be satisfied,  it is necessary that 

ql -< q <- q2,  (3.21) 

where ql and q2 are  roots of the quadrat ic  equation that  is obta ined  from (3.20) when strict equal i ty  is fulfilled in 

it and  are  given by rela t ions (3.8). Now, we need only verify that (3.18) and (3.19) can be sat isf ied.  These  

inequali t ies are  expressed  in the form 

q < (213)- l , q < m -  1 (3.22) 

Inequali t ies  (3.22) a re  corollaries of (3.21), since direct  subst i tut ion easi!y shows that  

- I  - 1  
q2 < (2fl) , q2 < m , 

if q2 is defined as in (3.8). Relat ions (3.9) follow from the fact that the matr ix Q(ql)  - Q(q2) is non-negat ive-  

defini te ,  which is easily verified by direct subst i tut ion.  The  proposit ion is proved. 

Now, the proved result  allows us to construct  the complete family of the rmodynamic  potent ials  for the 

system cons idered  on the basis of the results from the previous section. Subst i tut ion of (3.2) and  (3.3) into (2.8) 

and  of the obta ined  result  into (2.11) and (2.14) gives the following general  expression for the the rmodynamic  

potential  (in a mechanical  in terpreta t ion,  it is free energy) :  

~' (~t) = T (s) ds + T (s) ds - 

2 

Relat ion (3.23) covers the ent ire  family of the rmodynamic  potentials for this system,  when q passes  through 

interval [q~, q2 ], and also represents  the minimum and maximum thermodynamic  potentials ,  at q = ql and  q = q2, 

respectively,  where qt and  q2 are  def ined in (3.8). 
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It is surprising that neither the minimum nor maximum potential coincides with the expressior. :hat is used 

sometimes in viscoelastic mechanics for free energy: 

~ve ^ (~t) =21 .70.70 ~ ( r  + s ) ~ t ( r ) ~ t ( s ) d r d s .  (3.24) 

This expression was derived for viscoelastic bodies with relaxation functions that are superpositions of exponential 

functions. Such bodies can be simulated by a network of elastic and viscous elements, and in them free energy is 

identified with the energy of the elastic elements, and this expression is obtained on this basis. 

For the present system, expression (3.24) coincides with the first two terms in (3.23), i.e., ~ belongs to 

family (3.23) (at q = 0) but is not distinguished from other potentials in any way. For the system considered, which 

is understood as a viscoelastic body, as follows from (1.14) and (I.15), in its physical meaning the maximum 

potential in this state is the minimum work that would have to be done to transfer the body from the reference 

state to the present state, and the minimum potential is the maximum work that the body could do on the way 

from the present state to the reference state, or the maximum recoverable work, which has been studied for a rather 

long time in viscoelasticity theory [8 ]. It should be noted that at 21 =,,12, as follows from (3.23), when the relaxation 

function is expressed by a single exponential function the maximum and minimum potentials coincide, i.e., the 

thermodynamic potential is unique. 

These considerations lead to the formulation of an urgent problem: does any phenomenological principle 

exist that would isolate one potential from an entire nontrivial family, namely, the potential ~ve, which in this 

particular case corresponds to mechanical potential energy, which is understood conventionally as thermodynamic 
free energy? 

The present results allow the additional interesting conclusion that, apart from entropy production, it is 

likely that one more characteristic of the degree of nonequilibrium of a state (or a thermodynamic system) exists, 

namely, the difference between the maximum and minimum potentials. If this difference is zero for a particular 

nonequilibrium state, then for thermodynamic systems that are similar to the systems considered in the present 

example, the minimum work that must be done to transfer the system from the reference equilibrium state to a 

given nonequilibrium state and back (or vice versa) is equal to zero. Otherwise, this work is determined by the 

above-ment ioned difference between the thermodynamic potentials. In other words, this difference can be 

considered as a measure of attainability of a particular nonequilibrium state from the reference equilibrium state. 

The work was carried out under financial support from the Fundamental Research Fund of the Republic 

of Belarus (Project T20-359). 
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