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LINEAR THERMODYNAMIC SYSTEMS WITH
MEMORY. IIl. THEORY OF THERMODYNAMIC
NONEQUILIBRIUM POTENTIALS

V. T. Borukhov, V. L. Kolpashchikov, and UDC 536.7
A. I. Shnip

In the last paper of this series on nonequilibrium thermodynamics of linear systems with memory, methods
of the theory of linear passive dynamic systems are used to construct a complete family of thermodynamic
nonequiltbrium potentials for the thermodynamic systems considered. It is shown by a specific example that
the property of no..uniqueness of the therm.odynamic potential is inherent even in very simple thermodynamic
systems, and its possible physical interpretation is discussed.

Introduction. In the previous articles of this series [1, 2] we formulated a theory of generalized lincar
thermodynamic systems with memory and proved the necessary and sufficient conditions for satisfaction of the
second principle. In the proof we used the so-called entropy-free formulation of the sccond principle so that entropy
(or, generally speaking, a thermodynamic potential) would be a concept constructed in the theory. The general
theory gives only a definition of thermodynamic potentials as extreme constructions on a certain set of processes
[1-4]; therefore, the problem of derivation of explicit expressions for them arises, and this work is concerned with
this derivation for the above mentioned linear thermodynamic systems with memory. We managed to solve this
problem because the theory of thermodynamic systems considered shows a far-reaching analogy with the theory
of passive dynamic systems [S].

Since our main results make considerable use of concepts, methods, and results of the theory of linear
passive dynamic systems and this work is mainly intended for physicists and mechanical engineers, we will start
with a brief review of some necessary information from this theory [5].

1. Some Information from the Theory of Linear Passive Dynamic Systems. Let C, R, R+, and R be sets
of complex, material, material non-negative, and matcrial positive numbers, respectively. If L(W;, W>3) is the space

of linear opcrators from the vector space W, to the vector space W5, the norm of the operator L € L(W,, W) is
defined by

[ Ll]=sup{]Lx| D xEW,, x| = l}. (1.D

and the element from L(W,, W) conjugated to L and denoted by L™ is found from the relation

1 2
y° Lx = x ny, (1.2)
| 2 ‘
where © and ° represent scalar products in W, and W, respectively.

A linear dynamic system of the input-output type is described by a rclation of the type [5]
t
y()=Wou()+ W —1)u(r)dr, (1.3)

where u(-): R - V,is the input, y(-): R = Vg is the output, V; and Vp are the finite-dimensional vector spaces of
the input and output parameiers, respectively, and Wod(+) + W(-): RY = L(V;, V) is the pulse response.
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It is assumed that () and ¥(-) are locally quadratically integrable with the carrier restricted from the left.
Since V; and Vg are finite-dimensional, the number of inputs and outputs is finite, and the condition that W(-) is
a Boolean function, i.e., it is a finite sum of products of polynomials, sines, cosines, and exponents, corresponds
to the condition that the system have a finite number of internal degrees of freedom. System X, g is completely
described by its transfer function

G(s) = Wyt W, (s), (1.4)

where Wi (-):C = L(V;, Vg ) is the Laplace transform of W(-).
It is well known that system Xy, can be adequately expressed by an internal description:

¥,: x=Ax+Bu, y=Cx+Du, (1.5)

where x € V is the internal stale', V is the finite-dimensional vector spacc of internal states with the scalar product
LA L(VY), B LV, V), C» L(V,Vp), D> L(V,, Vp) are the operator parameters of the internal
description.
It is said that Zy is a relatization of system Z;, ¢ in the space of internal states if £y generates the same
map;ng of the inputs «(-) to the outputs y(-) as £, o does, and this is equivalent to the conditions

0

D=W,, CB=wW(), rer’ (1.6)

_where eA! is a one-parameter semigroup (occasionally called a matrix cxponent, whose definition can be found, in
particular, in [6]).

Relations (1.6) are equivalent to the condition

D+C(s—A) 'B=G(s). (1.7)

It is known that a set of realizations of Xy exists for a given ¥;, . Those realizations that have the additional
property that the dimension of the space of the internal states n = dim (V) is the smallest of the possible realizations

are called minimal. This property is satisfied if and only if the realization satisfies the conditions of attainability
and observability:

n-1
@ N (A*B) =V (attainability) , (1.8)
k=0

n—1
N Ker (CA%) =0 (observability) , (1.9)
k=0

where R is the region of values, @ is the sign of the algebraic sum, and Ker is the kernel of the corresponding
operator. Attainability means that any internal state can be realized by appropriate control, and observability means
that in the space of internal states there are no “dead zones," i.c., regions in which a change in the internal state
does not lead to a change in the output.

An important result concerning isomorphism in the space of internal states is known [7]: all possible

minimal realizations can be obtained from one unique realization with parameters {A, B, C, D} in terms of the
following transformation group:

t

{A.B,C, D}~ {SAs' ,SB,CB™ ', D}, (1.10)

Here we use the term “internal state” to avoid further confusion, though in the theory of dynamic systems the
term "state” is ordinarily used.
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where S is an arbitrary reversible operator of L(V, V). Moreover, an operator S that relates one minimal realization
to another is unique.

Passive dynamic systems are an important subclass of dynamic systems.
The concept of passivity is defined for dynamic systems in which the input and output spaces are one and

the same space V; = V= W with the scalar product (-, -). Only such systems will be considered everywhere below.
System X, is called passive if

!
Jlwm y@)dr =20 (L1

for any inputs u(-) and any 1 = 0.

The property of passivity of a dynamic system can be cxpressed in terms of the transfer function: the
system Z; ) is passive if and only if

G(o+1w)+Gx(o—-zw)20 (1.12)

does not coincide with singular G for any 0 2 0, w € R, or ¢ + iw. This property can also be expressed in terms
of realizations of dvnamic systems.

If Xy is some minimal realization of dynamic system Z; - p with parameters {A, B, C, D}, system Z;, ¢ is
passive if and only if there exists a positive-definite operator solution Q = Q* € L(W, W) of the inequality

(AQ+QA)x+ (QB-C ) ul x+{(I(B"Q-C)x+Dul, u) <0, (1.13)

which must be satisfied for any x € Vand any u € W.

Moreover, the family of such solutions Q is convex, compact, and contains maximum Q% and minimum
Q™ values (here and below, the congcepts "greater,” "smaller,” "maximum,” and "minimum" are interpreted in the
sense of the positive-definiteness of the operators), so that for any solution Q the relation

Q =Q=Q". (1.14)

holds.
Two Lyapunov functions defined in the space of internal states V as

T

s, (xg) = sup [- Jw@, y@hdr: T>0, x(-T) =0, x(0) = xo}. (1.15)
T} 0
0

s, (xg) = inf [—f(u @yyENdt: T>0, x(-T)=0, x(0) = x, (1.16)
Tu()| -T

are important in analysis of the properties of passive dynamic systems. [t can be demonstrated that these functions
are given by the expressions

sp (%) = %x-Q_x, (LN
5, (x) = %X.Q‘”X, (1.18)

In this case, it is clear that
s, (x) = 5,(x) (1.19)

for any x. It can be easily seen that with allowance for (1.5) inequality (1.13) is equivalent to
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(x (1) Qx (1) < (u (1), y (1)) (1.20)

s

1
2

Hence, with allowance for (1.17) and (1.18):

53
Sq (X (1) = s, (x (1)) 2 [ {y (1), u (1)) dt (1.21)
ty
5]
S (X (1) = 5, (x () = [ (@), u (1)) dr (1.22)
f
and
2
S(x()) = s (x (1) 2 f (), u (D) dr, (1.23)
fy
where
s(x)=—;~x~Qx, (1.24)

and Q is any of solutions (1.13).

The Lyapunov functions s, s,, s, will be important later in the construction of thermodynamic potentials.

2. Construction of Thermodynamic Potentials. Starting with this section, we return to the theory of linear
thermodynamic systems with memory considered in this series of articles. In what follows, it is assumed everywhere
that the relaxation function R (see [1]) is a Boolean function, i.c., it is a finite sum of products of exponents,
polynomials, sines, and cosines. In spite of its apparent boundedness, it is a rather extensive class of functions,
since any relaxation function can be approximated by a function from this class.

It should be noted that inequality (2.10a) [1], which by virtue of lemma 1 [1] and theorem 1 [2]is a

necessary and sufficient condition for the relaxation function to satisfy the second principle, can be expressed in
the form

}«G(PZA) — g — Eey (1)), A (1)) dr 2 0. 2.1
0

This inequality must be satisficd for any equilibrium state Ag and any process 4. For the thermodynamic system
considered we introduce a concomitant dvnamic system Z;, o for which the input u is defined as

u=¢e, (2.2)

and the output y is defined as

f (
y()=o-o0y-Ee=[R@é(t-t)dr=R@®u(t—1)dr. (2.3)

Thus, for this system the relaxation function R plays the role of the pulse response function W. Then, in
terms of this concomitant dynamic system, inequality (2.1) is equivalent to the following:

t
JO@, u@ydr 20, (2.4)

which is none other than the condition of passivity for this system (see (1.11)).
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Since according to the assumption the function R is Boolean, the dynamic system X, introduced here
admits at least one finite-dimensional minimal realization Z in terms of internal state variables. This implies that
there exists a finite-dimensional vector space of internal states V, and the operators A: V-V, B: § » V, and C:
V = § are such that for any inputs u(-), the following system gives the same outputs that (2.3) does:

y=Cx, x=Ax+ Bu. (2.5)

Algorithms for construction of such realizations with preset R have been developed in the theory of
realization of dynamic systems and described, in particular, in [7].

As was already stated in Sect. 1, any realization is associated with the initial pulse function R by the relation
(sec (1.6)):

R (1) =Ce*B. (2.6)

It should be noted that values of internal state variables x = 0 correspond to equilibrium (stationary) states
of dynamic system X (2.5). Since for a thermodynamic system, any configuration trajectory is such that ¢(¢) = 0
for all ¢ shorter than some fg, i.e., all trajectories start from equilibrium states, then the same property is also
characteristic of processes in the concomitant dynamic system Z, i.e., u(0) =0, x =0 for t < ty. It is this condition
that is the initial condition for diffcrential equation (2.5), so that with this initial condition its solution has the form

x(f) = } M7 Bu (5 ds . 2.7

00

A linear functional x(-) is introduced that establishes the projection of the space of differential histories
I (see [1 ] into the space of internal state variables V as follows:

S =JeMBr(s)ds. (2.8)
0
With this definition and notation (2.2), relation (2.7) can be rewritten as

x (1) =x (). (2.9)
Since, as follows from (2.4), the dynamic system defined here is passive, the Lyapunov functions s(x)

defined in Sect. | exist for it (see (1.15) and (1.16):

12
s —sEE) 2@, u@)dr. (2.10)
f
Here s is defined as

s(x)=%x-Qx, (2.11)
where Q: V Sy such that Q > 0, Q™ = Q is an operator solution of the inequality

[(A"Q + QA)x+ (QB - C)ul x+ (B"Q - C)x, u) <0, (2.12)

which must be satisfied for any x € W, u € s.

As was mentioned above, for passive dynamic systems, such a solution always exists, and the set of
solutions is compact and contains minimum and maximum solutions Q" and Q™, respectively.
The two functionals s: 3 > R and ¥: § - R are defined as

SO =sGEW). (2.13)
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Doy (@ 1) = 09 (@ = cq) + 3 (o, Ba) = 3 (g, Beq) + 50 214

If in (2.10) the terms of the concomitant dynamic system are replaced by the terms of the thermodynamic
system and definitions (2.13) and (2.14) are taken into consideration, inequality (2.10) can be rewritten as

2
Beg (€ (1 8 = B (e (1), €M) < [ (o (@), & (@) . (2.15)
f

If the time interval 1, — f; is denoted by T, and the initial state at the time 1y, by A, i.e.,

T:@-q,A:%UWgW, (2.16)
and the process defined by
Ay =€e{ -1, 2.1'H

is considered, inequality (2.15) will take the form
T oot (2.18)
Ve (PhAN) = ¥ (A) < J (0 (PRA), A (1) dr ~
0

which is equivalent to Clausius—Duhem inequality (2.6) [1]. Consequently, the state function ';'\60' which is defined
by (2.14), (2.13), and (2.11), is a thermodynamic potential and the functions $:0 and @;0 , which are defined
by the same formulas but with Q* and Q™ substituted for Q in (2.11), are the minimum and maximum
thermodynamic potentials, respectively. In this construction the fact is refliected that in its meaning any
thermodynamic potential is determined within its value in a certain fixed reference state, and here the equilibrium
state {eg, O*} is taken as this fixed reference state, which is denoted by the subscript. The construction given
above describes the entire family of thermodynamic potentials for this system in an explicit form.

3. An Example of a Thermodynamic System with a Nontrivial Family of Thermodynamic Potentials. It
appears that, contrary to possible expectations, the presence of a nontrivial family of thermodynamic potentials
(i.e., the presence of noncoinciding maximum and minimum potentials) is inherent even in comparatively simple
thermodynamic systems. In what follows we will give an example of such a system and a comprehensive description
of the family of thermodynamic potentials for it.

We consider a one-dimensional thermodynamic system (i.e., a system with a one-dimensional configuration

space s = R, so that E and R degenerate to scalars) for which og = 0, E = 0, and the relaxation function R has the
special form

?2‘(5)=R1e'{‘S+R2 e)"zs, 3.0

where A} <A, <0, Ry >0, and R; > 0.

An isothermal viscoelastic body with a relaxation function of the form of (3.1) can be a physical counterpart
of such a system. In this case, the “mechanical” terminology introduced in this theory should be understood
literally, i.e., o is mechanical stress, ¢ is deformation, and R is a stress-relaxation function. For the system
concomitant with this system defined by (2.6) and (2.7), we consider its following minimal realization:

x A0 x VR,
A=A ={0 Az}‘ B=C {ﬁﬂ (3-2)

For the matrix A given by (3.2), the matrix exponent has the form
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At e 0
e = It - 3.3)
0 e
The following parameters will be defined:
-1 ~1
n=1211—l.m=‘/RzR,—l.a=£‘j—2—n‘—,ﬂ=Ln"+—2"n‘—- 34
From the construction we have

a>1l, f=1. (3.5)

Because of peculiarities of this particular system, dissipative inequality (2.12) has the form
(AQ+QA)x+2(QB-B)ul x=<0. (3.6)

The following will be proved now.
Proposition 1. All positive-definite and symmetrical inequalities (3.6) have the form

[ —
Q) = ma q_l y 4 Sq=qy, CX)
q l-m ¢
where
— 28—V 48° + 2a — 2 - 2+VA4pc+ 2~ 2
o= PR MMl & : (3.8)
and
Q =Q@). Q" =Q. 39
Proof. Since inequality (3.6) must be satisfied for any x and any u, it follows that
QB-B=0, (3.10)

since otherwise a u could always be found such that this inequality would be violated.
We will express Q in the form of the arbitrary symmetrical matrix

c q
= (3.11H)
and substitute this expression into (3.10). As a result, ¢; and ¢ can be determined, and then (3.11) is reduced to

Q= 1 — mg q

1 aer. (3.12)
q Il-m g

Now, (3.12) is substituted into (3.6) with allowance for (3.10) 10 give

U, (1 = mg) gy + 4y

AQ + QA = e
g(A; +4y) (1 =m q)

<0. (3.13)

The conditions of non-negativity of the matrix in (3.13) are expressed as

U, (1 —-mg) =0, 'Mz(l-—m_lq)SO, (3.19)
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det (AQ + QA) 2 0. (3.15)

In view of (3.1), it follows from (3.14) that

l-mg=z0, l-m 'qg=20, (3.16)

and (3.15) gives

B A, (1 -mg(l-m '@g=¢ (4 +4p° =0, (3.17)
Moreover, it must be that Q > 0, which leads to
I ~mg>0 (3.18)
and
1 -2¢6>0. (3.19)

It is easily seen that (3.18) together with (3.19) also ensures (3.16), and, consequently, it is necessary 1o
solve jointly the system of inequalities (3.17), (3.18), and (3.19). The left-hand side of inequality (3.17) is
expressed as a quadratic trinomial relative to ¢: :

(a—l)q2+4,3q——2$0. (3.20)
In order that this inequality be satisfied, it is necessary that
4 =4=4, (3.21)

where ¢ and g3 are roots of the quadratic equation that is obtained from (3.20) when strict equality is fulfilled in
it and are given by relations (3.8). Now, we need only verify that (3.18) and (3.19) can be satisfied. These
inequalities are expressed in the form

g<@", g<m . (3.22)

Inequalities (3.22) are corollaries of (3.21), since direct substitution easily shows that

-1 -1
q2<(2ﬂ) * Q2<m »

if g2 is defined as in (3.8). Relations (3.9) follow from the fact that the matrix Q(g;) ~ Q(gz) is non-negative-
definite, which is easily verified by direct substitution. The proposition is proved.

Now, the proved result allows us to construct the complete family of thermodynamic potentials for the
system considered on the basis of the results from the previous section. Substitution of (3.2) and (3.3) into (2.8)
and of the obtained result into (2.11) and (2.14) gives the following general expression for the thermodynamic
potential (in a mechanical interpretation, it is free energy):

2 2
R, (= Ry (=
P&y = (yas| + [T () ds| -
2 2
0 0

_4
z 0

oo . 2
V R\R, (f (eA'S - e‘lzs) & (s) ds] : (3.23)

Relation (3.23) covers the entire family of thermodynamic potentials for this system, when ¢ passes through
interval [qy, ¢2], and also represents the minimum and maximum thermodynamic potentials, at ¢ = ¢, and ¢ = g2,
respectively, where g and ¢, are defined in (3.8).
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It is surprising that neither the minimum nor maximum potential coincides with the expressior. ‘hat is used
sometimes in viscoelastic mechanics for free energy:

P, () = %7 ?E ( + 5) ' (1) &' (s5) dr ds. (3.24)
00

This expression was derived for viscoelastic bodies with relaxation functions that are superpositions of exponential
functions. Such bodies can be simulated by a network of elastic and viscous elements, and in them free energy is
identified with the energy of the elastic elements, and this expression is obtained on this basis.

For the present system, expression (3.24) coincides with the first two terms in (3.23), i.e., ¥y belongs to
family (3.23) (at ¢ =0) but is not distinguished from other potentials in any way. For the system considered, which
is understood as a viscoelastic body, as follows from (1.14) and (1.15), in its physical meaning the maximum
potential in this state is the minimum work that would have to be done to transfer the body from the reference
state to the present state, and the minimum potuntial is the maximum work that the body could do on the way
from the present state to the reference state, or the maximum recoverable work, which has been studied for a rather
long time in viscoelasticity theory {8 ]. It should be noted that at 1; = A, as follows from (3.23), when the relaxation
function is expressed by a single exponential function the maximum and minimum potentials coincide, i.c., the
thermodynamic potential is unique.

These considerations lead to the formulation of an urgent problem: does any phenomenological principle
exist that would isolate one potential from an entire nontrivial family, namely, the potential Pve, Which in this
particular case corresponds to mechanical potential energy, which is understood conventionally as thermodynamic
free energy?

The present results allow the additional interesting conclusion that, apart from eatropy production, it is
likely that one more characteristic of the degree of nonequilibrium of a state (or a thermodynamic system) exists,
namely, the difference between the maximum and minimum potentials. If this difference is zero for a particular
nonequilibrium state, then for thermodynamic systems that are similar to the systems considered in the present
example, the minimum work that must be done to transfer the system from the reference equilibrium state to a
given nonequilibrium state and back (or vice versa) is equal to zero. Otherwise, this work is determined by the
above-mentioned difference between the thermodynamic potentials. In other words, this difference can be
considered as a measure of attainability of a particular nonequilibrium state from the reference equilibrium state.

The work was carried out under financial support from the Fundamental Research Fund of the Republic
of Belarus (Project T20-359).
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